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Appendix A: Environmental indices of petrale 

recruitment, and estimates of the abundance 

spatial distribution of juveniles 

Nick Tolimieri 

Prior ROMS based indicators of petrale recruitment 

Haltuch et al. (2020) examined the relationship between recruitment deviations from the 
2019 petrale assessment (Wetzel 2019) and oceanographic drivers based on model output 
from a Regional Ocean Modeling System (ROMS) model for the California Current 
Ecosystem (Neveu et al. 2016). Potential drivers were selected based a conceptual life 
history model, which was used to generate life-stage-specific and spatio-temporally-
specific mechanistic hypotheses regarding oceanographic variables that might likely 
influence survival at each life stage. The study area encompassed the region from 40 to 
48°N in the California Current Ecosystem with individual predictors limited by depth or 
distance from shore (Table A1). Model selection resulted in a single model in which four 
oceanographic variables explained 73% of the variation in in the recruitment deviations. 
Recruitment deviations were: 

(1) positively correlated with degree days during the female precondition period 
(DDpre), 

(2) positively correlated with mixed-layer depth during the egg stage (MLDegg), 

(3) negatively correlated with cross-shelf transport during the larval stage (CSTlarv), 
and 

(4) negatively correlated with cross-shelf transport during the benthic juvenile stage 
(CSTbjuv). 

These results suggested that ROMS output might be useful as the basis for an 
environmental index of recruitment for petrale to allow for better model precision and 
near-term forecasting. However, while the ROMS model used by Haltuch et al. (2020) was 
consistent in structure and inputs for 1980-2010, the ROMS model was updated beginning 
in 2011 producing potential discontinuities in the ROMS predictions and the identified 
drivers from the earlier 1980-2010 time period. 

Here, outputs from the updated ROMS model for 2011-2022 were compared to the 1980-
2010 mode looking for discontinuities in ROMS time series used in Haltuch et al. (2020) 
with a focus on the the four predictors identified as important in that work. The conceptual 
life-history model and abbreviation for terms are shown in Table 1. 
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Table 1: Conceptual life-history model for petrale, including abbreviation of ROMS term. Reproduced from 
Haltuch et al. (2020). 

Life stage Year Stage 
duration Stage depth Abbrv. Hypothesis ROMS variable 

Preconditio
ning 

Year 0  
May– 
October 

 Bottom 
depths of 
50–200 m 

DDpre Higher bottom water temperatures 
increases food demand resulting in 
lower egg production, egg quality, or 
probability of spawning and lowers 
recruitment (likely a bell-shaped 
relationship) 

Mean bottom water 
temperature (°C, 4 days) 

Spawning Year 1 
November– 
March 

 Bottom 
depths of 
250–500 m  

 

Tpre.a Bottom water temperature acts as a 
spawning cue with fish less likely to 
spawn at high temperature resulting 
in lower recruitment  

 

Mean bottom water 
temperature (°C, 4 days)  

 

    Tpre.b Water column temperature acts as a 
spawning cue with fish less likely to 
spawn at high temperature resulting 
in lower recruitment 

Mean water column 
temperature (°C, 4 days) 

Egg, 
surface 

Year 1 
November– 
April 

6–14 days Water 
column 
from 
surface to 
MLD 

MLDegg Eggs are buoyant so mixed-layer 
depth limits how far they rise in the 
water column affecting later transport 

Mean mixed-layer depth 
(m) 

    LSTegg1 Transport in the water column above 
the MLD to settlement habitat affects 
recruitment 

Mean long-shore transport 
between the surface and 
MLD (m/s, 4 days 
cumulative) 

    CSTegg Transport in the water column above 
the MLD to settlement habitat affects 
recruitment (aka Advection reduces 
recruitment while retention enhances 
recruitment) 

Mean cross-shelf transport 
between the surface and 
MLD (m/s, 4 days 
cumulative) 

    DDegg1 Growth/Predation hypothesis: growth 
rate is faster in warm water leading to 
reduced time vulnerable to predators 

Degree days in the water 
column calculated from 
mean water column 
temperature between the 
surface and MLD (days, 

Egg, sinking Year 1 
November– 
April 

6–14 days Water 
column 
from MLD 
to 400 m 

LSTegg2 Transport in the water column to 
settlement habitat affects recruitment 
(aka Advection reduces recruitment 
while retention enhances recruitment) 

Mean long-shore transport 
from the MLD to 400 m 
(m/s, 4 days cumulative) 

    CSTegg2 Transport in the water column to 
settlement habitat affects recruitment 

Mean cross-shelf transport 
from the MLD to 400 m 
(m/s, 4 days cumulative) 

    DDegg2 Growth/Predation hypothesis: growth 
rate is faster in warm water leading to 
reduced time vulnerable to predators 

Degree days in the water 
column calculated from 
mean water column 
temperature between the 
MLD and 400 m (days,  
4 days) 

Larvae 
(both yolk 
sack and 
feeding) 

Year 1  
December - 
May 

~5 months 
for all 
pelagic 
stages 

Water 
column  
from 0–50 
m 

LSTlarv North to south transport in the water 
column brings northern zooplankton 
and 

Mean long-shore transport 
in the water column at 50–
150 km offshore (m/s, 4 
days cumulative) 
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Life stage Year Stage 
duration Stage depth Abbrv. Hypothesis ROMS variable 

    CSTlarv Transport in the water column to 
settlement habitat affects recruitment 
(aka Advection reduces recruitment 
while retention enhances recruitment) 

Mean cross-shelf transport 
in the water column at 50–  
150 km offshore (m/s, 4 
days cumulative) 

    DDlarv Growth/Predation hypothesis: growth 
rate is faster in warm water leading to 
reduced time vulnerable to predators 

Degree days in the water 
column calculated from 
mean water column 
temperature at 50 – 150 
km offshore (days, 4 days) 

Pelagic 
juveniles 
(feeding 
pelagics) 

Year 1  
March–
June 

~5 months 
for all 
pelagic 
stages 

Water 
column  
from 0 to  
150 m 

LSTpjuv North to south transport brings 
northern zooplankton and leads to 
higher survival and recruitment, 
Transport to settlement habitat 
affects recruitment 

Mean long-shore transport 
in the water column at 80–  
120 km offshore (m/s, 4 
days  
cumulative) 

    CSTpjuv Transport in the water column to 
settlement habitat affects recruitment 
(aka Advection reduces recruitment 
while retention enhances recruitment) 

Mean cross-shelf transport 
in the water column at 80–  
120 km offshore (m/s, 4 
days cumulative) 

    DDpjuv Growth/Predation hypothesis: growth 
rate is faster in warm water leading to 
reduced time vulnerable to predators 

Degree days in the water 
column calculated from 
mean water column 
temperature at 80– 120 km 
offshore (days, 4 days) 

Benthic 
Juvenile  
(Age-0) 

Year 1 
April– 
October 

 Bottom 
depths from 
50–150 m 
AND  
150–500 m 

LSTbjuv Bottom water transport to settlement 
habitat affects recruitment (Advection 
reduces recruitment while retention 
enhances recruitment) 

Mean long-shore transport 
at bottom depths of 50–150 
m and 150 – 500 m (m/s, 4 
days cumulative); Two 
depth ranges are 
considered due to 
uncertainty regarding 
juvenile distributions 

    CSTbjuv Bottom water transport to settlement 
habitat affects recruitment (aka 
Advection reduces recruitment while 
retention enhances recruitment) 

Mean cross-shelf transport 
at bottom depths of 50–150 
m and 150–500 m (m/s, 4 
days cu- mulative); Two 
depth ranges are 
considered due to 
uncertainty regarding 
juvenile distributions 

DD = degree days; T = temperature; MLD = mixed-layer depth, LST = longshore transport, CST = cross-
shelf transport; pre = female preconditioning stage; egg = egg stage, larv = larval stage, pjuv = pelagic 
juveniles, bjuv = benthic juveniles.  
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ROMS outputs 

Visual comparison of the 1980-2010 and the 2011-2022 ROMS outputs show distinct 
discontinuities between the two time periods in multiple time series (Fig. A1). In particular, 
DDpre and MLDegg (from the original recruitment analysis) both show distinction changes 
in scale and trend across the 2010/2011 boundary. The cross-shelf transport time series 
from the original model (CSTlarv and CSTbjuv.a) are not as distinct but do suggest some 
discontinuity between ROMS models. Other parameters also show rapid changes, such as 
the longshore transport terms for the egg stage (LSTegg and LSTegg2) as well as the 
temperature terms. In some cases, the 2014-2016 marine heatwave may have influenced 
the 2011+ outputs (and thus be real), but this effect is unlikely the case for many of the 
terms that jump sharply from 2010 to 2011. 
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Figure 1: ROMS predictors used in the original 1980-2010 analysis but updated to include 2011-
2022 outputs. DD = degree days, CST = cross-shelf transport, LST = long-shore transport, MLD = 
mixed layer depth, pre = prespawning, egg = egg stage, larv = larval stage, pjuv = pelagic 
juveniles, bjuv = benthic juveniles. ‘a’ and ‘b’ suffixes indicate drivers with the same time period 
but different depth ranges due to differences in the literature. Dotted red line indicates the 
2010/2011 switch in model outputs. 
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There are multiple possibilities for how an individual ROMS time series may change over 
the 2010/2011 boundary and how those changes might impact the ROMS-recruitment 
model from Haltuch et al. (2020). There might be no change in the extracted ROMS variable 
such that the relationship between the ROMS predictor and petrale recruitment deviations 
remains the same. That is, there is no change in the intercept, slope, or variance (Fig. A2c). 
This outcome would be ideal because the current ROMS-recruitment model could be used 
unchanged with updated ROMS time series. The overall relationship might stay the same 
but variability in the ROMS parameter mighty change due to new observed model inputs 
leading to more correct estimates (Fig. A2b). Essentially, the variance increase (or 
decreases) from 2011+ due to change in the ROMS model structure, including new or 
different time series of observed data, but the slope and intercept remain the same. This 
outcome could be modeled by allowing the variance to change across the 2010/2011 
boundary. 

 

Figure 2: Hypothetical relationships between ROMS predictors and petrale recruitment 
deviations across the 2010/,2011 boundary. a) the relationship is the same, b) a change in 
variance of the ROMS predictor, c) a change in the intercept, and d) a change in the slope. Colors 
represent different time periods. 

Additionally, the absolute value of the ROMS variable might change (e.g., water column 
temperature is warmer than previously modeled), but the overall relationship (slope) 
remains the same but with a different y-intercept (Fig. A2c). Here, one could add a time-
period term to the model to account for different intercepts in the two blocks of time. 

Finally, the relationship between the ROMS predictor and recruitment deviations might 
actually change (Fig. A2d). While one could include an interaction term in the model, this 
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case represents the least desired outcome, as it is difficult to interpret the meaning of the 
interaction. Relationships between environmental variables and biological outcomes are 
often non-linear, with performance decreasing both above and below a species optimum 
(e.g., growth and temperature relationships for fish). Obviously, there can also be some 
combination of b-d, or the relationship can just breakdown completely. 

Refitting the Haltuch et al. (2020) model 

To examine the impact of updating the ROMS model on the ROMS-recruitment relationship, 
the ROMS time series were updated (following Haltuch et al. (2020)) to include the new 
2011+ ROMS outputs. The full ROMS time series were then fit against recruitment 
deviations from the 2019 petrale stock assessment (Wetzel 2019). The best-fit model from 
Haltuch et al. (2020) was used as the base model: 

Recruitment Deviations ~ DDpre + MLDegg + CSTlarv + CSTbjuv.a 

Recruitment deviations ran from 1981-2018 because some parameters were averaged over 
the winter and included data from two calendar years (i.e., Dec 2010 in the 2011 time 
series), and the first year with all predictors is 1981. The year 2011 was excluded from the 
analysis because some of the averaged ROMS variables would include data from both ROMS 
time periods and there were obvious step changes in some variables. 

In addition to the base model, the following model structures were also investigated. These 
structures included the base model, plus: 

(1) different intercepts by period (1981-2010 vs, 2012-2018) 

(2) different variance by period 

(3) interactions between Period and the four terms in the original best-fit model (un 

(4) the model with interactions back-fit to remove non-significant interaction terms. 

(5) a separate four-factor generalized additive model (GAM) was also included to better 
visualize non-linear relationships between the ROMS predictors and petrale 
recruitment deviations. 

For the linear models, the model including the interaction terms but with some interactions 
removed had the lowest AIC and fewest coefficients (Table 2) and was chosen as the most 
parsimonious model (Burnham & Anderson 1998).  



 

A8 
 

Table 2: Model fitting criteria for the ROMS-recruitment model fits. Bold indicates the moswl chosen as the best-
fit model based on delta AIC < 2.0 and the fewest parameters. 

Model AIC Parameters Delta AIC 

All interactions -1.882 10 0.000 

GAM -0.979 37 0.903 

Back-fit with 
interactions 

-0.514 8 1.368 

Period 19.980 6 21.862 

Orginal best-fit 22.843 5 24.725 

Different variances 30.276 8 32.158 

For 1981-2018, the best-fit model included Period and two interactions (Back-fit with 
interactions) because it had a ΔAIC < 2.0 and the fewest parameters: 

Recruitment Deviations ~ Period + DDpre + MLDegg + CSTlarv + CSTbjuv.a + DDprePeriod + 
MLDeggPeriod 

This model explained slightly less variance (r2 = 0.71) than the original 1980-2010 model 
(r2 = 0.73), but had 7 parameters (excluding the intercept) and 37 data points (1981:2010, 
2012-2018), or just over five points per predictor term. Examination of the model 
coefficients (Table 3) indicates that the relationships between recruitment deviations and 
DDpre and MLDegg changed across the 2010/2011 boundary from positive to negative. 

Overall the model fit to the data was good and captured a decline in recruitment later in the 
time series (Fig. A3). Forecasting through 2022 (latest ROMS output availability), suggested 
high recruitment in 2022. This model also over-predicted recruitment in 2015 during the 
2014-2016 marine heatwave. 
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Table 3: Parameter estimates from the best-fit model including combined ROMS time series from 1981-2018. 
Model r^2 = 0.71, p < 0.001. 

Model Estimate SE t-value p-value 

Intercept 3.862 1.984 1.946 0.061 

Period (before) -7.605 2.073 -3.669 0.001 

DDpre -0.005 0.004 -1.308 0.201 

MLDegg -0.067 0.023 -2.874 0.008 

CSTlarv -38.082 7.108 -5.358 0.000 

CSTbjuv -38.795 11.695 -3.317 0.002 

DDpre x Period 0.016 0.004 3.637 0.001 

MLDegg x Period 0.112 0.025 4.505 0.000 

 
 
 

 

Figure 3: Model fit for ROMS predictors to the recruitment deviations for 1981-2018. Black line 
= model prediction including forecast to 2019-2022. Points are the recruitment deviations from 
the 2019 petrale stock assessment. Error envelopes indicate 1.0 s.e. 

As noted earlier, the interaction makes it somewhat difficult to draw conclusions on the 
credibility of the model - especially given the large discontinuities in the ROMS outputs and 
the change in slope of some of the relationships. Therefore, the four-factor GAM output was 
examined to better understand the relationships between the ROMS predictors and 
recruitment deviations. The four-factor GAM explained about 65% of the variance in 
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petrale recruitment deviations (Fig. A4, r2 = 0.67). While the fit is slightly lower than the 
linear model, the GAM did not over-predict the more or less average 2018 recruitment 
deviation, while slightly over-predicting several lower recruitment deviations earlier in the 
time series. In particular, the GAM model caught the low recruitment in 2015 but under 
predicted recruitment in 2016. 

 

Figure 4: GAM model fit to the recruitment deviations for 1981-2018. Black line = model 
prediction including forecast to 2019-2022. Points are the recruitment deviations from the 2019 
petrale stock assessment. Error envelopes indicate 1.0 s.e. 

For CSTlarv the new data fall within the same range as the 1980-2010 models, although 
there may be a slight change in the slope (Fig. A5). CSTbjuv appearsnon-linear but largely 
due to one data point (Fig. A5). Nevertheless, the newer values are all lower than the 
earlier period with the exception of one point. 

Likewise, for MLD, the newer ROMS model predicts a shallower MLD and there appears to 
be a shift in the slope of the relationship (Fig. A5). With a continuous time series, one might 
reasonably interpret this non-linear relationship as reasonable, but given that the shift is 
associated with two different models, it seems more likely that the pattern is an artifact of 
the model discontinuity. 

Other models 

For DDpre, the 2011+ data are much “warmer” and in a different part of the graph, with the 
exception of one earlier period data point for DDpre (Fig. A5). For DDpre, the convex shape 
of the relationship would make some sense if there were no obvious shifts in temperature 
between time periods. Temperature typically impacts growth and survival for many fishes 
with an optimal temperature and declining performance in either warmer or colder waters. 
However, given the discontinuity between with the 2011+ data being warmer (Fig. A1), it 
seem more likely that this result is an artifact of the different ROMS models and not a 
biological one. 
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Figure 5: Smooths from the four-factor GAM. Black points are 1981-2010. Red points are 2012-
2018. Numbers in parentheses on the y-axis are the estimated degrees of freedom where edf = 
1.0 suggests a linear relationship. 

Replacing ROMS predictors with observed variables 

Because of the difficulties with the updated ROMS outputs, we also examined replacing 
specific ROMS predictors with observed variables or variables derived from observations, 
like the cumulative upwelling index. 

West Coast Groundfish Bottom Trawl Survey (WCGBTS) bottom temperature 
data 

In addition to bottom trawls for groundfish biomass and biological data, the WCGBTS 
(Keller et al. 2017) collects environmental data like bottom temperature. The survey time 
series begins in 2003, covers approximately 50 - 1200 m, and is conducted from May to 
October. This time period overlaps with the preconditioning period for petrale sole 
(Haltuch et al. 2019) suggesting that directly observed bottom temperature might be used 
to replace the DDpre term from the ROMS model. 
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Bottom temperature (btemp) from the WCGBTS was averaged for each year for May - 
October and then lagged one year to match the pre-conditioning year (btemp_pre). This 
lagging sets the available observed time series at 2004-2022. Degree days was also 
calculated as bottom temperature minus the reference temperature of 3.5 °C and averaged 
for each year. Normally one would sum degree days, but it was averaged here due varying 
samples sizes each year and multiple observations each year. Estimated this way degree 
days (btemp_DDpre) is essentially the same as btemp_pre but 3.5 degrees °C lower. The 
resulting time series are shown in Figure 6 along with DDpre and Tpre.a from the ROMS 
output for comparison. Interestingly, there were no significant correlations between the 
ROMS predictors and observed bottom temperature data whether compared across 2004-
2022 or when separated by time period (2004-2010, 2011-2022) (Fig. A6). 

 

Figure 6: Relationships between observed temperature from the trawl survey (WCGBTS) and 
modeled ROMS variables. a) time series of observed bottom temperature during the 
preconditioning period (btemp_pre), observed degree days during the preconditioning period 
(btemp_DDpre), DDpre, and Tpre.a, b) correlation between Tre.a and trawl bottom temperature, 
and c) correlation between DDpre and trawl bottom temperature. There were no significant 
correlations between observed bottom temperature data and modeled ROMS variables whether 
tested across both time periods (2004-2022, extent of the trawl data) or separated by ROMS time 
periods (2004-2010 and 2011-2022, p > 0.05 in all cases). 



 

A13 
 

Cumulative upwelling index (CUTI) 

The negative correlation with cross-shelf transport during the larval and benthic juvenile 
stages seen by Haltuch et al. (2020) indicates that recruitment is better when there is 
offshore transport in surface waters. This condition implies that better recruitment may 
correlate with upwelling either due to some transport-related interaction or better 
productivity during upwelling conditions leading to better feeding conditions. Therefore, 
CUTI was examined as a potential replacement for CSTlarv and CSTbjuv.a by averaging 
daily values for December-May and April-October, respectively (Fig. A7). 

 

Figure 7: Cumulative upwelling indices (CUTI) calculated for the larval and benthic juvenile 
stages. Error envelopes indicate 1.0 s.d. 

Cross-shelf transport and CUTI were correlated during the larval stage (Fig. A8a, r = -0.68, 
p < 0.001), but not during the benthic juvenile stage Fig. A8b, r = 0.01, p = 0.972). 

 

Figure 8: Relationships between CUTI and ROMS variables. 
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Fitting new models 

Although correlations between the ROMS variables in the best-fit model from Haltuch et al. 
(2020) and observed ocean temperature and the CUTI time series were weak, these new 
variables were used to fit the following model: 

Recruitment deviations = btemp_pre + cuti_larv + cuti_juv 

This model explained only 12% of the variance and was non-significant (p = 0.7). The 
model did capture some trends in recruitment deviations (Fig. A9) but missed both high 
and low recruitment events, suggesting that while it might be improved, but the 
relationship does not seem valuable at present. 

 

Figure 9: Model fit for the bottom-temperature and CUTI predictors. Points are the recruitment 
devations from the 2019 stock assessment; line is the predicted fit with standard error. Note that 
there is no prediction for 2021 because there was no bottom trawl temperature data in 2020, 
which was necessary for calculating btemp_pre. 

Basin scale predictors 

The Ecosystem Status Report from the California Current Integrated Ecosystem 
Assessment reports several basin-scale indicators as indicative of environmental 
conditions along the west coast of the USA (Harvey 2022). These indicators include the 
Ocean Niño Index (ONI), Pacific Decadal Oscillation (PDO) index, and the North Pacific Gyre 
Oscillation (NPGO) index. These indicators were tested here to determine whether they 
could be used as the basis of an environmental index of petrale recruitment. The Coastal 
Upwelling Transport Index (CUTI) was also included as a measure of large scale cross-shelf 
transport for the basin. Indices were averaged for the spring (April-June) and summer 
(July-Sept). The ONI, PDO, and NPGO were also lagged to the pre-conditioning year for 
females because prior analyses (Haltuch et al. 2019) suggested that climate in the form of 
degree days was important during the pre-conditioning period (May-October). 

Model selection (delta AIC < 2.0 and fewest parameters, Burnham & Anderson (1998)) was 
then used to select the best-fit model with the restriction that no model could have more 
than five predictor variables. Predictors that were correlated (r > 0.75) were excluded from 
the same model. For example, spring and summer NPGO indices were highly correlated and 
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excluded from the same model (Fig. A10). See Tolimieri et al. (2018) and Haltuch et al. 
(2020) for more detail on overall methodology. 

 

Figure 10: Correlations among basin-scale predictors. 

Model selection produced a large number of similarly weighted models. There were 22 
models with an AICc < 2.0 (Table 4). AICc weights for these models were low and relatively 
similar. Most models included the NPGO during the pre-conditioning spring 
(npgo_spr_pre), NPGO during the summer of recruitment (npgo_sum), and PDO in the 
spring of the recruitment year (pdo_spring), while other terms occurred in some model but 
not all. Because it had the fewest terms and these terms were consistent across all models, 
the following model was chosen as the best-fit for the basin-scale parameters: 

Recruitment deviations ~ npgo_spr_pre + npgo_sum + pdo_spr  
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Table 4: Model selection parameters and coefficients for the models with delta AIC < 2.0. NPGO/npgo = Northern 
Pacific Gyre Oscillation; ONI/oni = Ocean Nino Index, PDO/pdo = Pacific decadal oscillation; spr = spring; sum = 
summer; pre = female precoditioning year. The best-fit model is shown in bold. 
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0.16   -0.28 0.15   -0.29  -0.24  0.14  0.60 12.87 0.00 0.08 

0.09   -0.25 0.17   -0.21  -0.20 0.14   0.60 13.05 0.18 0.08 

0.09   -0.42 0.15 0.26    -0.20 0.13   0.60 13.39 0.52 0.06 

0.08   -0.19 0.17     -0.21 0.12   0.55 13.69 0.82 0.06 

0.07   -0.24 0.18    -0.12    -0.13 0.54 13.82 0.94 0.05 

0.02   -0.17 0.17    -0.10  0.11  -0.15 0.59 13.87 1.00 0.05 

-0.01 0.08  -0.28 0.19    -0.12    -0.11 0.59 13.96 1.09 0.05 

-0.04 0.10  -0.50 0.17 0.28   -0.14     0.59 14.00 1.12 0.05 

0.13   -0.27 0.18     -0.20    0.49 14.15 1.27 0.04 

0.06   -0.19 0.16    -0.11   0.10 -0.19 0.59 14.20 1.32 0.04 

0.01  0.14 -0.14     -0.14  0.14  -0.15 0.59 14.21 1.33 0.04 

0.09   -0.24 0.16    -0.10 -0.15    0.54 14.25 1.38 0.04 

0.07   -0.20 0.18     -0.14 0.13  -0.11 0.58 14.40 1.53 0.04 

0.17   -0.22   -0.10 -0.41  -0.29  0.18  0.58 14.51 1.64 0.04 

0.03   -0.17 0.21      0.14  -0.17 0.53 14.57 1.70 0.04 

-0.04 0.10 0.14 -0.53  0.33   -0.18     0.58 14.59 1.71 0.04 

0.15   -0.48 0.17 0.24    -0.19    0.53 14.60 1.72 0.04 

-0.06 0.09  -0.24 0.18    -0.14     0.53 14.60 1.73 0.04 

0.06   -0.27 0.22  0.08  -0.16    -0.11 0.58 14.64 1.77 0.03 

0.11   -0.30 0.16   -0.18 -0.10 -0.14    0.58 14.66 1.79 0.03 

0.13   -0.22 0.17     -0.15  0.13 -0.15 0.58 14.73 1.86 0.03 

0.15   -0.33 0.18   -0.17  -0.19    0.53 14.84 1.97 0.03 
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Petrale recruitment deviations were negatively correlated with the NPGO in the pre-
condition spring and with the PDO in the spring of the age-0 year. Recruitment was 
positively correlated with the NPGO in the summer of the recruitment year (Table 5). 

Table 5: Parameter estimates from the best-fit model using basin scale predictors: ONI, PDO, NGPO, and CUTI. 
Model r^2 = 0.49, p < 0.001. 

Model Estimate SE t-value p-value 

Intercept 0.134 0.058 2.332 0.027 

npgo_spr_pre -0.268 0.065 -4.150 0.000 

npgo_sum 0.182 0.059 3.107 0.004 

pdo_spr -0.201 0.070 -2.859 0.008 

NPGO/npgo = Nothern Pacific Gyre Ossilation; ONI/oni = Ocean Nino Index, 
PDO/pdo = Pacific decadal oscillation; spr = spring; sum = summer; pre = female 
precoditioning year. 

This basin-scale predictors model explained 49% of the variation in recruitment deviations 
(r2 = 0.49, p < 0.001, Fig. A11). The model under-estimated highs and lows in petrale 
recruitment and predicted increases in recruitment later in the time series. While basin-
scale predictors lack direct mechanistic explanations (compared to the ROMS predictors) 
and there are always concerns about the non-stationarity of relationships between the 
basin-scale indicators and physical processes, this model does track recruitment well. 

For comparison, the predictions and fit for the model with the highest r2 (and delta AIC < 
2.0) are also shown in Figure A11. This model explained about 11% more variance (Table 
4) and did a better job of matching the higher and lower recruitment (as one would expect 
from a model with more terms). These results suggest that the three-term model is 
generally good at capturing variation in petrale recruitment but that other drivers impact 
the more extreme recruitment that the base mode either over or under predicts. 
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Figure 11: Model fits for different models using the basin-scale predictors. NPGO = North Pacific 
Gyre Oscillation; PDO = Pacific Decadal Oscillation; spr = April=June; sum = July-September; pre 
= pre-conditioning year. Line is the predicted fit with standard error; Points are the recruitment 
deviations; dotted line indicates the zero recruitment deviation for reference. 

From a stock assessment context, the inclusion of the npgo_sum term (Table 5) is a 
problem since the index would be available until the end of September at the earliest, 
causing the index to be a year behind the assessment. Removing the npgo_sum (and 
npgo_spr) term explained less variance but the model was also significant (r2 = 0.31, p = 
0.006)(Fig. A11). However, the spring and summer NPGO are highly correlated (r = 0.97, 
Fig. A10). Therefore, the best-fit model was re-run replacing npgo_sum with npgo_spr. This 
model explained slightly less variation in recruitment than the best-fit model but 
performed well overall (r2 = 0.42, p = 0.002) (Fig. A11). 

Copernicus Marine Environment Monitoring Service (CMEMS) 
Oceanographic Products 

Given the difficulties with the combined ROMS analyses across 2010/2011, we also 
investigated alternative oceanographic model products produced by Copernicus Marine 
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Environment Monitoring Service (CMEMS) (https://marine.copernicus.eu/) and Mercator Ocean 
International (MOI) (https://www.mercator-ocean.eu/) to test if this modelling framework 
could be used to produce an environmental index of petrale recruitment. 

We combined two CMEMS products: the Global Ocean Reanalysis and Simulation 
(GLORYS12V1: GLOBAL_MULTIYEAR_PHY_001_030, https://doi.org/10.48670/moi-000211) 
(Fernandez & Lellouche 2018, Jean-Michel et al. 2021, Drevillon et al. 2022) and the 
Copernicus Marine global analysis and forecast (CMGAF, 
GLOBAL_ANALYSISFORECAST_PHY_001_024; https://doi.org/10.48670/moi-00016) (Le 
Galloudec et al. 2022). The data are served by the Copernicus Marine Service 
(https://marine.copernicus.eu/). When downloaded the data covered: GLORYS: 1993-01-01 to 
2020-10-31 and CMGAF: 2020-11-01 to 2023-06-01. Note both the reanalysis and the 
analysis and forecast walk forward in time. For the CMGAF, time series are updated at 
regular intervals beginning with a daily forecast and hindcast simulation, and a weekly 
‘hindcast-best analysis’ with data assimilation through -15 days (Le Galloudec et al. 2022). 

Overall the CMEMS analysis followed Tolimieri et al. (2018) and Haltuch et al. (2020). More 
specifically, data for water column temperature, bottom temperature, and mixed-layer 
depth were downloaded as daily values for 40-48 °N and processed as follows for each life-
history-stage predictor: 

1. Subsetted data by bottom depth, mixed-layer depth, and distance from shore as 
relevant (see Table A1) 

2. Calculated the daily average 

3. Subsetted #2 by the relevant time periods (months in Table A1) 

4. Calculated the annual average (or sum for degree days) for 1993-2023 for that 
potential predictor 

For transport variables, monthly means from the CMEMS models were used to reduce 
processing time but followed the same overall model selection process as as above. Overall, 
the combined CMEMS time series did not show obvious break points from 2020 to 2021 
(Fig. A12). 

Model selection followed Tolimieri et al. (2018) and Haltuch et al. (2020). Briefly, CMEMS 
predictors were pre-screened for correlations among variables and non-linear 
relationships with petrale recruitment deviations. Correlated predictors (r >= 0.75, Fig. 
A@ref(fig: glorys-correlations)) were excluded from the same model. Non-linearity for 
individual terms was evaluated by comparing the linear model to a model including both 
the linear and quadratic forms of the predictor. If the AICc of the quadratic form was lower, 
we included the quadratic form as a potential predictor as well, but required that the linear 
term appear in models that included the quadratic from. 

Model selection was carried out using the ‘dredge’ function in the MuMIn package in R (R 
Core Team (2023), Bartoń (2023)). Candidate models were evaluated based on their delta 
AIC and number of predictors. 

https://marine.copernicus.eu/
https://www.mercator-ocean.eu/
https://doi.org/10.48670/moi-000211
https://doi.org/10.48670/moi-00016
https://marine.copernicus.eu/
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Figure 12: Time series of processed CMEMS indicators used in the model fitting. 
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Figure 13: Correlations between CMEMS time series. DD = degree days, T = temperature, MLD = 
mixed-layer depth, LST = longshore transport, CST = cross-shelf transport, pre = female 
precondition period prior to spawning, egg = egg stage, larv = larval stage, pjuv = pelagic 
juveniles, bjuv = benthic juveniles. 

Results 

Only two candidate models had delta AICc values of 4.0 or less; only one model had a delta 
AICc of less than 2.0. (Table A(tab:mtable)). The best-fit model included degree days during 
the pelagic juvenile period (DDpjuv) in both its linear and quadratic form, and long-shore 
transport (LSTlarv) in the larval stage (Table A(tab:mtable)). 
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Table 6: Terms and coefficients for the candidate models with a delta AIC value of 4.0 or less. 

Int DDpjuv DDpjuv2 LSTlarv LSTlarv2 LSTpjuv LSTpjuv2 R2 AICc delta weight 

24.859 -6.683 0.446 15.776 474.695   0.683 6.014 0.000 0.870 

26.754 -7.212 0.480   5.958 471.358 0.633 9.820 3.805 0.130 

DD = degree days; LST = longshore transport, larv = larval stage, pjuv = pelagic juveniles. 

This best-fit model explained 68% of the variance in the petrale recruitment deviations 
from 1993-2018 (Fig A14) and generally captured the peaks and lows in the recruitment 
deviations well. Predictions of potential petrale recruitment through 2023 are included in 
Figure A14. However, the model did over-predict recruitment in 2015 during the large 
marine heatwave off the us west coast. When predicted through 2023, this index suggests 
strong incoming recruitment equivalent to historical highs during the 2006-2008 period. 

 

Figure 14: Relationship between recruitment deviations from the 2019 assessment and the MOI 
index for 1993-2018 and predictions for 2019-2023. Points are the recruitment deviations from 
the assessment; solid like is the MOI environemental index of recruitment, and grey envelope 
represents 95 confidence intervals. 

Model diagnostics and testing 

Model diagnostics and testing followed Tolimieri et al. (2018) and Haltuch et al. (2020). 
Model testing was carried out to determine how stable the best-fit model was to both 
individual years and the precision of the estimates of recruitment deviations. Tests 
included: 

1. Boot-strap analysis on the best-fit model was used to estimate bias 

2. Jackknife analysis on the best-fit model was used to determine the impact of 
individual years on the model fit. 

3. Refit the best-fit model using data for 1993-2013 and then predict 2014-2018. 

4. Recruitment deviations were re-sampled 1000 times from a log-normal distribution 
to evaluate the impact of the precision of these estimates on the fit of the best-fit 
model. 



 

A23 
 

5. Individual years were jackknifed and then the entire model selection process was 
rerun to determine the impact of individual years on the selection of the predictors 
in the best-fit model. 

6. Recruitment deviations were re-sampled 100 times and the entire model selection 
process rerun to evaluate the impact of the precision of these estimates on the 
predictors included in the best-fit model. 

Diagnostics for the best-fit model 

There was no obvious autocorrelation in the residuals (Fig. A15). Diagnostic plots did 
suggest some under-prediction when recruitment deviations were high (Fig. A16. 

 

Figure 15: Autocorrelation plot for the best-fit model 
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Figure 16: Diagnostic plots for the best-fit model. 

Model testing 

Bias (estimated from bootstrap analysis with 1000 bootstraps) was generally low (Table 
A7) at around 5-15% of the scaled coefficient with the exception of LSTlarv, which had a 
small impact overall on the model relationship (standardized coefficient of -0.028. 

Table 7: Standardized coefficients and estimates of bias from 1000 bootstraps. 

Predictor Coefficient Bias SE Std Coef Std Bias Std SE 

Intercept 24.859 -1.930 11.363 -0.288 0.016 0.074 

DDpjuv -6.683 0.506 3.134 -0.096 0.015 0.060 

LSTlarv 15.776 -0.448 4.352 -0.028 0.011 0.051 

I.DDpjuv.2. 0.446 -0.033 0.215 0.163 -0.014 0.076 

I.LSTlarv.2. 474.695 -27.744 124.598 0.167 -0.010 0.052 

DD = degree days; LST = longshore transport, larv = larval stage, pjuv = 
pelagic juveniles. 

Jackknifing the best-fit model by year (removing individual years and refitting the best-fit 
model) did not show strong effects of individual years on the fit of the model (Fig. A17) 
with the majority of r2 values falling between 0.65 and 0.70. 
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Figure 17: Results of jackknife re-fitting of the best-fit model to evaluate the impact of individual 
years on the model fit. 

Predictions of individuals years from the jackknife analysis fell largely along the same trend 
as for the best-fit model and within the 95% confidence limits (Fig. A18). Prediction 2014 
to 2018 based on refitting the best-fit model to data for 1993-2013 captured the last five 
years relatively well, although estimates for 2015 and 2016 were high (Fig. A18). 
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Figure 18: Fit of the best-fit model to the recruitment deviations from the 2019 petrale 
asessment. Solid line is the predicted fit and dashed lines are the 95% confidence limits. Open 
circles are the log recruitment deviations from the 2015 sablefish assessment. Stars are predicted 
values from jackknife analysis removing individual years one at a time. Red points are predictions 
from fitting best-fit model to 1993-2013 and then predicting 2014-2018. 

To examine the impact of the precision of the estimate of recruitment deviations on the fit 
of the best-fit model, recruitment deviations were re-sampled from a log-normal 
distribution using the estimate and standard error for each year and the model refit. This 
procedure was completed 1000 times. The performance of the best-fit model was fairly 
stable (Table A8). The mean r2 for the across all 1000 iterations was r2 =0.567 with a lower 
95% quantile of r2 = -6.602. 

Table 8: Results of resampling recruitment deviations and refitting the best fit model 1000 times. Best-fit = best-
fit model; Mean = mean values over the 1000 refits, median = median values over the 1000 refits; and 2.5 and 
97.5% confidence intervals. 

Term R2 Int DDpjuv DDpjuv2 LSTlarv LSTlarv2 p 

Best-fit 0.683 24.859 -6.683 0.446 15.776 474.695 0.000 

Mean 0.567 24.572 -6.602 0.440 15.791 474.485 0.005 

Median 0.573 24.554 -6.596 0.441 15.781 475.272 0.001 

2.5% 0.385 11.931 -9.792 0.194 10.321 367.356 0.000 

97.5% 0.737 35.892 -3.061 0.662 21.215 576.199 0.031 

DD = degree days; LST = longshore transport, larv = larval stage, pjuv = pelagic 
juveniles. 

Jackknifing years and re-running the entire model selection process also produced stable 
results (Table A9). DDpjuv and LSTlarv occurred in the 23 and 24 (0 respectively) of the 
top model across the 100 jackknifes. CSTegg1 and DDegg1 each occurred in three models, 
while MLDegg and its quadratic form occurred in two. 
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Table 9: Result of jackknifing individual years and re-running the model selection process.  The results are the 
number of times a predictor appeared in the model with the lowest AICc in each iteration of the re-selection.  

Predictor No 

CSTegg1 3 

DDegg1 3 

DDpjuv 23 

DDpjuv2 23 

LSTlarv 24 

LSTlarv2 24 

MLDegg 2 

MLDegg2 2 

DD = degree days; T = temperature; MLD = mixed-layer 
depth, LST = longshore transport, CST = cross-shelf 
transport; egg = egg stage, larv = larval stage, pjuv = 
pelagic juveniles. 

A similar analysis was conducted in which recruitment deviations were re-sample from a 
log-normal distribution and the entire model selection process was rerun to determine 
how the variability in recruitment estimates might impact the overall model selection 
process. LSTlarv and DDpjuv and their quadratic terms were included in at least 79% of the 
refits (Table A10). The two linear terms alone appeared in 90% (LSTlarv) and 85% 
(DDpjuv) of models, providing strong support for stability these terms in relation to the 
precision of estimates of recruitment deviations. 
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Table 10: Result of resampling recruitment deviations and completing the model selection process 100 times. The 
results are the number of times a predictor appeared in the model with the lowest AICc from each re-dredging 
iteration.  

Predictor No. models No. jackknifes 

CSTbjuv.a 6 4 

CSTbjuv.b 1 1 

CSTegg1 59 33 

CSTegg2 6 5 

CSTlarv 1 1 

CSTpjuv 1 1 

DDbjuv.a 2 2 

DDbjuv.b 1 1 

DDegg1 48 39 

DDegg2 18 18 

DDlarv 26 22 

DDpjuv 85 61 

DDpre 7 6 

CSTegg22 6 5 

DDpjuv2 79 56 

LSTlarv2 87 68 

LSTpjuv2 26 26 

LSTpjuv2 45 27 

LSTbjuv.a 0 0 

LSTbjuv.b 1 1 

LSTegg1 1 1 

LSTegg2 0 0 

LSTlarv 90 69 

LSTpjuv 31 30 

MLDegg 45 27 

Tpre.a 7 4 

Tpre.b 8 5 

DD = degree days; T = temperature; MLD = mixed-layer depth, LST = longshore 
transport, CST = cross-shelf transport; pre = female preconditioning stage; egg = egg 
stage, larv = larval stage, pjuv = pelagic juveniles, bjuv = benthic juveniles.  



 

A29 
 

Finally, the data were subset to 1993-2013 and the entire model selection process was re-
run. The resulting best-fit model included the same terms as for the full analysis. This 
1993-2013 model was then used to predict petrale recruitment deviations through 2023. 
The overall fit of the model though 2013 was high (r2 = 0.78) (Fig. A19). However, like the 
best-fit model, it over-predicted recruitment for 2015 and 2016 during the height of the 
marine heatwave, suggesting that some fundamental dynamics may have shifted during 
this period. 

 

Figure 19: Fit of the best-fit model from the 1993-2013 analysis and predictions through 2023. 
Black line is the model prediction with 95% confidence limits. Black points are the recruitment 
deviations used in the model development; red points are future recruitments. 

Distribution and abundance of juvenile petrale 

Tolimieri et al. (2020) used spatio-temporal models to examine the distribution and 
abundance of 13 species of juvenile fishes along the West Coast. Those results are updated 
here following Tolimieri et al. (2020) but using the ‘sdmTMB’ package (Anderson et al. 
2022) for R instead of the ‘VAST’ package (Thorson 2019). 

Data come from the West Coast Groundfish Bottom Trawl Survey (WCGBTS)(Keller et al. 
2017) for 2003-2022. There are no data for 2020 as COVID restrictions prevented the 
survey from being completed. The individual biomass data contain estimates of age, length, 
and biomass for subsamples of each haul and occasionally data for the entire haul when 
catch is low. There is length information (cm total length) for all individuals in the 
subsample but many individual fishes lack weight or age data due to time-constraints in the 
field. To expand the subsample, the following procedure was followed: 

1. Missing weights for individuals in the subsample were estimated by first estimating 
the length-weight relationship from existing data and using this relationship to 
estimate the missing weights. 

2. Individual fish were allocated to age classes following Tolimieri et al. (2020) by 
using length-age relationships from the WCGBTS data to determine age-class 
maximum lengths. See Tolimieri et al. (2020) for more detail. The maximum lengths 
used here were taken from Tolimieri et al. (2020). Maximum length was 21 cm total 
length, and depth ranged from 50-200 m. Based on otolith analyses, these fish would 
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be age-1 and age-2 fishes. Thus, these results do not represent recruitment but 
juvenile abundance several years later. 

3. The proportional biomass of juveniles in each subsamble was calculated and used to 
estimate the total biomass of juvenile fishes in the full trawl. 

The juvenile biomass index was low in recent years (Fig. A20), which does not match up 
with the predictions of recruitment from the basin-scale models. Observed modeled 
recruitment deviations from the 2019 assessment and the observed juvenile biomass in the 
trawl survey do not align either. Juvenile abundance for petrale was highest in the 2008-
2011 time period (Fig. A20) with high densities just south of 45°N and moderate 
abundance to the south until about 37 °N. This period of high abundance followed several 
strong recruitment events from 2006-2008 (Fig. A14) suggesting a 2-3 year delay between 
recruitment events and when they are observed in the trawl survey, which is consistent 
with the age of the fishes in the trawl survey. This delay would also function to reduce the 
correlation between the recruitment deviations from the assessment and observed 
abundance of agee-1 and age-2 petrale since the index in Figure A20 integrates several age 
classes. 

Age-1 and age-2 petrale were widely distributed from 35 to 46 °N during the period of high 
abundance from 2008-2011 (Fig. A21). Abundance was highest around the bank system at 
approximately 44 °N, even in years of lower abundance. 

 

Figure 20: Index of juvenile abudance from the species distribution modelling. 

 

Figure 21: Distribution juvenile petrale sole along the West Coast from 2003-2022 from the 
species distribution modeling. 



 

A31 
 

References 
Anderson SC, Ward EJ, English PA, Barnett LA (2022) sdmTMB: An r Package for Fast, 

Flexible, and User-Friendly Generalized Linear Mixed Effects Models with Spatial 
and Spatiotemporal Random Fields. bioRxiv. 

Bartoń K (2023) MuMIn: Multi-model inference. 

Burnham KP, Anderson DR (1998) Model selection and inference: A practical information-
theoretic approach. Springer-Verlag, New York, NY. 

Drevillon M, Fernandez E, Lellouche JM (2022) For the Global Ocean Physical Multi Year 
Product GLOBAL_MULTIYEAR_PHY_001_030. Copernicus Product User Manual 1:1–
25. 

Fernandez E, Lellouche JM (2018) Product User Manual for the Global Ocean Physical 
Reanalysis Product Glorys12v1. Copernicus Product User Manual 4:1–15. 

Haltuch MA, Tolimieri N, Lee Q, Jacox MG (2020) Oceanographic Drivers of Petrale Sole 
Recruitment in the California Current Ecosystem. Fisheries Oceanography 29:122–
136. 

Harvey A C. J. Leising (2022) 2022-2023 California Current Ecosystem Status Report a 
report of the NOAA California Current Integrated Ecosystem Assessment Team 
(CCIEA) to the Pacific Fishery Management Council, March 7, 2023. 

Jean-Michel L, Eric G, Romain B-B, Gilles G, Angélique M, Marie D, Clément B, Mathieu H, 
Olivier LG, Charly R (2021) The Copernicus Global 1/12 Oceanic and Sea Ice 
Glorys12 Reanalysis. Frontiers in Earth Science 9:698876. 

Keller AA, Wallace JR, Methot RD (2017) The Northwest Fisheries Science Center’s West 
Coast Groundfish Bottom Trawl Survey: History design, and description. U.S. 
Department of Commerce. 

Le Galloudec O, Law Chune S, Nouel L, Fernandez E, Derval C, Tressol M, Dussurget R, 
Bairdeau A, Tonani M (2022) Product User Manual for Global Ocean Physical 
Analysis and Forecasting Product GLOBAL_ANALYSISFORECAST_PHY_001_024. 
Copernicus Product User Manual 1:1–41. 

Neveu E, Moore AM, Edwards CA, Fiechter J, Drake P, Crawford WJ, Jacox MG, Nuss E 
(2016) An Historical Analysis of the California Current Circulation Using ROMS 4d-
Var: System Configuration and Diagnostics. Ocean Modelling 99:133–151. 

R Core Team (2023) R: A language and environment for statistical computing. R 
Foundation for Statistical Computing, Vienna, Austria. 

Thorson JT (2019) Guidance for Decisions Using the Vector Autoregressive Spatio-
Temporal (VAST) Package in Stock, Ecosystem, Habitat and Climate Assessments. 
Fisheries Research 210:143–161. 

https://cran.r-project.org/package=MuMIn
https://doi.org/10.1111/fog.12459
https://doi.org/10.1111/fog.12459
https://doi.org/10.7289/V5/TM-NWFSC-136
https://doi.org/10.7289/V5/TM-NWFSC-136
https://doi.org/10.1016/j.ocemod.2015.11.012
https://doi.org/10.1016/j.ocemod.2015.11.012
https://www.r-project.org/
https://doi.org/10.1016/j.fishres.2018.10.013
https://doi.org/10.1016/j.fishres.2018.10.013


 

A32 
 

Tolimieri N, Haltuch MA, Lee Q, Jacox MG, Bograd SJ (2018) Oceanographic Drivers of 
Sablefish Recruitment in the California Current. Fisheries Oceanography 27:458–
474. 

Tolimieri N, Wallace J, Haltuch M (2020) Spatio-Temporal Patterns in Juvenile Habitat for 
13 Groundfishes in the California Current Ecosystem. PLoS One 15. 

Wetzel CR (2019) Status of Petrale Sole (Eopsetta Jordani) Along the U.S. West Coast in 
2019. Pacific Fishery Management Council, 7700 Ambassador Place NE, Suite 101, 
Portland, OR 97220. 

https://doi.org/10.1111/fog.12266
https://doi.org/10.1111/fog.12266
https://doi.org/10.1371/journal.pone.0237996
https://doi.org/10.1371/journal.pone.0237996

