

NOAA FISHERIES

2023 California Quillback Rockfish Rebuilding Analysis

Mop Up Panel September 26, 2023

Dr. Brian Langseth

NOAA Fisheries Northwest Fisheries Science Center

Overview of 2021 CA quillback rockfish stock assessment

- Stock Synthesis model with two fishing fleets (comm, rec)
- Catch + discard, length composition, and biological data
- Estimated stock to be below MSST (14% in 2021)
- Axis of uncertainty based on natural mortality

Rebuilding specifications

- Based on approved 2021 CA base model
- Rebuilding software version 3.12j (December 2021)
- 2021-2024 removals based on GMT provided values or Council requested alternative 2024 value

Year	Commercial (mt)	Recreational (mt)	Total (mt)
2021	5.03	10.55	15.58
2022	8.87	9.24	18.11
2023	7.67	3.45	11.12
2024	7.37	3.25	10.62
2024 alt	3.82	2.50	6.32

GMT (or CDFW) Provided Values

Input changes from 2021 rebuilding analysis

- Harvest strategies start in 2025 instead of in 2023
 - Two additional years of buffers
- Two additional years of fixed removals (2023-2024)
 - Updated removals in 2021-2022 with new values

Assumed Removals in 2021 analysis

Year	Com*	Rec*	Total (mt)
2021	3.32	10.18	13.50
2022	2.87	9.02	11.90

*Com/Rec values not provided. Total was split by fleet based on the relative Fs averaged over 2017-2019

Assumed Removals in 2023 analysis

Year	Commercial	Recreational	Total (mt)
2021	5.03	10.55	15.58
2022	8.87	9.24	18.11
2023	7.67	3.45	11.12
2024	7.37	3.25	10.62
2024 alt	3.82	2.50	6.32

Total was split to approximate fleet-specific values as provided

Rebuilding strategies

Dark text = Specified in the TOR Light text = Additional strategies

- 1) Eliminate all harvest beginning in the next management cycle (i.e. estimate $T_{F=0}$). Equivalent to setting SPR = 1.0
- 2) Apply the harvest rate that would generate the ACL contributions specified for the current year (i.e. latest year specified in regulations)
- 3) Apply the SPR or relevant harvest control rule in the current rebuilding plan
- 4) Apply the harvest rate that is estimated to lead to a 50% probability of recovery by alternative target years
 - a) by the current T_{TARGET}
 - b) by T_{MAX} from the previous cycle
 - c) by T_{MAX} from the current cycle
 - d) by T_{MID} from the current cycle
- 5) Apply the 40-10 harvest policy based on category 2 σ = 1.0 and P* = 0.45
- 6) Apply the ABC harvest rate based on category 2 σ = 1.0 and P* = 0.45
- 7) Apply a range of SPR values (0.5, 0.55, 0.6, 0.65, 0.7, 0.8, 0.9)

Some rebuilding strategies require existing rebuilding plan

Dark text = Specified in the TOR Light text = Additional strategies

- 1) Eliminate all harvest beginning in the next management cycle (i.e. estimate $T_{F=0}$). Equivalent to setting SPR = 1.0
- 2) Apply the harvest rate that would generate the ACL contributions specified for the current year (i.e. latest year specified in regulations)
- 3) Apply the SPR or relevant harvest control rule in the current rebuilding plan

No existing rebuilding plan

4) Apply the harvest rate that is estimated to lead to a 50% probability of recovery by alternative target years

a) by the current T_{TARGET}

No existing rebuilding plan that set T_{TARGET} or T_{MAX}

- b) by T_{MAX} from the previous cycle
- c) by T_{MAX} from the current cycle
- d) by T_{MID} from the current cycle
- 5) Apply the 40-10 harvest policy based on category 2 σ = 1.0 and P* = 0.45
- 6) Apply the ABC harvest rate based on category 2 σ = 1.0 and P* = 0.45
- 7) Apply a range of SPR values (0.5, 0.55, 0.6, 0.65, 0.7, 0.8, 0.9)

Some rebuilding strategies not possible or are very similar

Dark text = Specified in the TOR Light text = Additional strategies

- 1) Eliminate all harvest beginning in the next management cycle (i.e. estimate $T_{F=0}$). Equivalent to setting SPR = 1.0
- 2) Apply the harvest rate that would generate the ACL contributions specified for the SPR < 0.5 Current year (i.e. latest year specified in regulations)
- 3) Apply the SPR or relevant harvest control rule in the current rebuilding plan
- 4) Apply the harvest rate that is estimated to lead to a 50% probability of recovery by alternative target years
 - a) by the current T_{TARGET}
 - b) by T_{MAX} from the previous cycle
 - c) by T_{MAX} from the current cycle
 Nearly identical to SPR = 0.5 strategy
 - d) by T_{MID} from the current cycle
- so results not shown
- 5) Apply the 40-10 harvest policy based on category 2 σ = 1.0 and P* = 0.45
- 6) Apply the ABC harvest rate based on category 2 σ = 1.0 and P* = 0.45
- 7) Apply a range of SPR values (0.5, 0.55, 0.6, 0.65, 0.7, 0.8, 0.9)

Rebuilding strategies in report

Dark text = Specified in the TOR Light text = Additional strategies

- 1) Eliminate all harvest beginning in the next management cycle (i.e. estimate $T_{F=0}$). Equivalent to setting SPR = 1.0
- 2) Apply the harvest rate that would generate the ACL contributions specified for the current year (i.e. latest year specified in regulations)
- 3) Apply the SPR or relevant harvest control rule in the current rebuilding plan
- 4) Apply the harvest rate that is estimated to lead to a 50% probability of recovery by alternative target years
 - a) by the current T_{TARGET}
 - b) by T_{MAX} from the previous cycle
 - c) by T_{MAX} from the current cycle
 - d) by T_{MID} from the current cycle
- 5) Apply the 40-10 harvest policy based on category 2 σ = 1.0 and P* = 0.45
- 6) Apply the ABC harvest rate based on category 2 σ = 1.0 and P* = 0.45
- 7) Apply a range of SPR values (0.5, 0.55, 0.6, 0.65, 0.7, 0.8, 0.9)

Including uncertainty within analysis

- All runs assume full attainment of the estimated catch corresponding to the specified harvest rate
- Each run incorporates random future recruitment strength
- Runs include uncertainty in starting values based on M states of nature from 2021 assessment
 - 25% of simulations from low state (M = 0.0464)
 - 50% of simulations from base (M = 0.057)
 - 25% of simulations from high state (M = 0.0744)

Rebuilding reference points

Table 1: Summary of the rebuilding reference points.

Quantity	2021
	Assessment
	Values
SB_0 (millions of eggs)	55.08
$SB_{40\%}$ (millions of eggs)	22.03
SB_{2021} (millions of eggs)	7.75
Year rebuilding begins	2025
Current year	2021
T_{MIN}	2045
Mean generation time (years)	26
T _{MAX}	2071
T_{MID}	2058
$T_{F=0}$	2045
T _{TARGET}	TBD
SPR _{TARGET}	TBD
Current SPR (2021)	0.1

Rebuilding strategies

Table 2: Results of rebuilding strategies based on alternative SPR targets for 50 percent probability of recovery based on the assumed removals for 2021–2024. SPR for the ABC and 40-10 strategies is provided as a dash (-) because these strategies do not 1 and a second sect CDD and *.*....

	nave a constant SPR value.		Decreasing fishing pressure						Nofishing			
	Quantity	SPR= .500	SPR= .550	SPR= .600	SPR = .650	SPR= .700	SPR= .800	SPR= .900	$\begin{array}{l} {\rm Yr}=\\ {\rm T}_{\rm MID} \end{array}$	F=0	40-10 rule	ABC Rule
Fixed	2021 Assumed Removals (mt) 2022 Assumed Removals (mt)	15.58 18 11	15.58 18.11	15.58 18 11	15.58 18.11	15.58 18 11	15.58 18.11	15.58 18.11	15.58 18 11	15.58 18.11	15.58 18 11	15.58 18.11
removals	2023 Assumed Removals (mt) 2024 Assumed Removals (mt)	11.12	11.12	11.12	11.12	11.12	11.12	11.12	11.12	11.12	11.12	11.12
	2024 Assumed Removals (mt) 2025 ACL (mt) 2026 ACL (mt)	1.51	1.26	1.05	0.86	0.69	0.41	0.19	1.12	0	0	1.3
	SPR	$\frac{1.76}{0.5}$	$1.47 \\ 0.55$	1.23 0.6	$1.01 \\ 0.65$	0.82 0.7	0.49 0.8	0.22 0.9	1.31 0.58	0 1	0 -	1.5 -
	T _{TARGET} T _{MAX}	2072 2071	2062 2071	2057 2071	2053 2071	2051 2071	2048 2071	2046 2071	2058 2071	$2045 \\ 2071$	2056 2071	2060 2071
	Probability of recovery by T _{MAX}	0.494	0.694	0.809	0.878	0.928	0.979	0.999	0.777	0.999	0.845	0.736

Time series of quantities in Table 3-6, Figures 1-4

Comparison To Alternative Analysis With Different 2024 Removals

Council request: Analysis using alternative value for 2024 total removals

- Repeat rebuilding analysis making single change to 2024 total removal value (6.32 mt) from original value (10.62 mt)
- Results are similar to those using original value
 - T_{MIN} and T_{MAX} occur 1 year sooner
 - 2025 and 2026 estimated catches at most 0.17 mt greater

Reference points comparison

Original 2024 Value (10.62 mt)

Quantity	2021			
	Assessment			
	Values			
SB_0 (millions of eggs)	55.08			
$SB_{40\%}$ (millions of eggs)	22.03			
SB ₂₀₂₁ (millions of eggs)	7.75			
Year rebuilding begins	2025			
Current year	2021			
T _{MIN}	2045			
Mean generation time (years)	26			
T _{MAX}	2071			
T _{MID}	2058			
$T_{F=0}$	2045			
T _{TARGET}	TBD			
SPR _{TARGET}	TBD			
Current SPR (2021)	0.1			

Alternative 2024 Value (6.32 mt)

Quantity	2021 Assessment Values
SB_0 (millions of eggs)	55.08
$SB_{40\%}$ (millions of eggs)	22.03
SB_{2021} (millions of eggs)	7.75
Year rebuilding begins	2025
Current year	2021
T_{MIN}	2044
Mean generation time (years)	26
T _{MAX}	2070
T_{MID}	2057
$T_{F=0}$	2044
T _{TARGET}	TBD
SPR _{TARGET}	TBD
Current SPR (2021)	0.1

Rebuilding strategies comparison

Original	SPR=.500	SPR=.550	SPR = .600	SPR= .650	SPR= .700	SPR= .800	SPR= .900	$\substack{\text{Yr}=\\\text{T}_{\text{MID}}}$	F=0	40-10 rule	ABC Rule
2021 Assumed Removals (mt)	15.58	15.58	15.58	15.58	15.58	15.58	15.58	15.58	15.58	15.58	15.58
2022 Assumed Removals (mt)	18.11	18.11	18.11	18.11	18.11	18.11	18.11	18.11	18.11	18.11	18.11
2023 Assumed Removals (mt)	11.12	11.12	11.12	11.12	11.12	11.12	11.12	11.12	11.12	11.12	11.12
2024 Assumed Removals (mt)	10.62	10.62	10.62	10.62	10.62	10.62	10.62	10.62	10.62	10.62	10.62
2025 ACL (mt)	1.51	1.26	1.05	0.86	0.69	0.41	0.19	1.12	0	0	1.3
2026 ACL (mt)	1.76	1.47	1.23	1.01	0.82	0.49	0.22	1.31	0	0	1.5
SPR	0.5	0.55	0.6	0.65	0.7	0.8	0.9	0.58	1	-	-
T _{TARGET}	2072	2062	2057	2053	2051	2048	2046	2058	2045	2056	2060
T _{MAX}	2071	2071	2071	2071	2071	2071	2071	2071	2071	2071	2071
Probability of recovery by $\mathrm{T}_{\mathrm{MAX}}$	0.494	0.694	0.809	0.878	0.928	0.979	0.999	0.777	0.999	0.845	0.736

Alternative	SPR=.500	SPR= .550	SPR= .600	SPR= .650	SPR= .700	SPR= .800	SPR= .900	$\substack{\text{Yr}=\\\text{T}_{\text{MID}}}$	F=0	40-10 rule	ABC Rule
2021 Assumed Removals (mt)	15.58	15.58	15.58	15.58	15.58	15.58	15.58	15.58	15.58	15.58	15.58
2022 Assumed Removals (mt)	18.11	18.11	18.11	18.11	18.11	18.11	18.11	18.11	18.11	18.11	18.11
2023 Assumed Removals (mt)	11.12	11.12	11.12	11.12	11.12	11.12	11.12	11.12	11.12	11.12	11.12
2024 Assumed Removals (mt)	6.32	6.32	6.32	6.32	6.32	6.32	6.32	6.32	6.32	6.32	6.32
2025 ACL (mt)	1.68	1.4	1.16	0.95	0.77	0.46	0.21	1.24	0	0	1.44
2026 ACL (mt)	1.92	1.61	1.34	1.11	0.9	0.54	0.25	1.43	0	0	1.64
SPR	0.5	0.55	0.6	0.65	0.7	0.8	0.9	0.58	1	-	-
T _{TARGET}	2070	2061	2056	2052	2050	2047	2045	2057	2044	2055	2059
T _{MAX}	2070	2070	2070	2070	2070	2070	2070	2070	2070	2070	2070
Probability of recovery by ${\rm T}_{\rm MAX}$	0.5	0.709	0.827	0.894	0.943	0.991	0.999	0.8	0.999	0.857	0.766

Future ACL contributions and probabilities are higher for alternative due to lower 2024 removal (Difference in ACL contributions of no more than 0.17 mt Difference in probability of no more than 3%)

 T_{TARGET} is 1-2 years earlier

Questions/Comments?

Extra slides

Overview of 2021 CA quillback rockfish stock assessment

- Single-sex Stock Synthesis model with two fishing fleets
- Use catch, discard, length composition, and biological data
- Estimate stock to be below MSST (14% in 2021)
- Axis of uncertainty based on natural mortality

Year

Year

Figures for analysis with alternative 2024 value (6.32 mt)